General principles of a qualitative chemical analysis. Identification of inorganic cations ### Questions - What is the goal of chemical analysis? - What signals are used for quantitative analysis? - What signals are used for qualitative analysis? - Do you know any examples of qualitative analysis? # Signals for qualitative analysis - Color and smell (solution, precipitate, flame) - Boiling and melting points - Formation of a precipitate with a reagent - Refraction index - Spectra (light absorption and emission, mass spectra) # General procedure of analysis #### Qualitative analysis #### Chemical Precipitation (+ color) Burning (+color) Formation of a colored product Voltammetry #### Physical UV-Vis spectroscopy IR spectroscopy NMR spectroscopy Chromatography Electrophoresis Mass spectrometry #### **Biochemical** Biosensors Bioassays # Examples of qualitative analysis $$NH_4^+ + OH^- \longleftrightarrow NH_3^+ + H_2O$$ $$Ni^{2+} + 2C_4H_8N_2O_2 + 2OH^- \leftrightarrow C_8H_{14}N_4O_4 + 2H_2O$$ # **FLAME TEST COLOURS** # Qualitative analysis by solubility ### Identification of cations - Acid-base - Sulfide - Ammonia-phosphate # Sulfide classification | Group No.
Rus (Eng) | Cations | Reagent | |------------------------|--|-----------------------------------| | I (or V) | K+, Na+, NH ₄ +, Mg ²⁺ | No | | II (or IV) | Ba ²⁺ , Ca ²⁺ , Sr ²⁺ | $(NH_4)_2CO_3$ | | III | Al ³⁺ , Cr ³⁺ , Fe ³⁺ , Fe ²⁺ , Ni ²⁺ ,
Co ²⁺ , Mn ²⁺ , Zn ²⁺ | (NH ₄) ₂ S | | IV (or II) | I: Cu ²⁺ , Cd ²⁺ , Hg ²⁺ , Bi ³⁺ II: As ³⁺ , Sn ²⁺ , Sn ⁴⁺ , Sb ³⁺ , AsO ₄ ³⁻ , SbO ₄ ³⁻ | H ₂ S | | V (or I) | Ag+, Pb ²⁺ , Hg ₂ ²⁺ | HCl | ### Flow chart ## Acid-base classification | Group No. | Cations | Reagent | |-----------|---|--------------------------------------| | l | K+, Na+, NH ₄ + | No | | II | Ag+, Pb ²⁺ , Hg ₂ ²⁺ | HCl | | III | Ba ²⁺ , Ca ²⁺ , Sr ²⁺ | H ₂ SO ₄ | | IV | Al ³⁺ , Cr ³⁺ , Zn ²⁺ , As ³⁺ , As ⁵⁺ | NaOH + H ₂ O ₂ | | V | Mg ²⁺ , Sb ³⁺ , Mg ²⁺ , Sb ⁵⁺ , Bi3+,
Mn ²⁺ , Fe ³⁺ , Fe ²⁺ | NaOH or NH₄OH
(conc.) | | VI | Cu ²⁺ , Cd ²⁺ , Hg ²⁺ , Ni ²⁺ , Co ²⁺ | NH ₃ (conc.) | ## Video https://www.youtube.com/watch?v=AWEr80mXj8Y