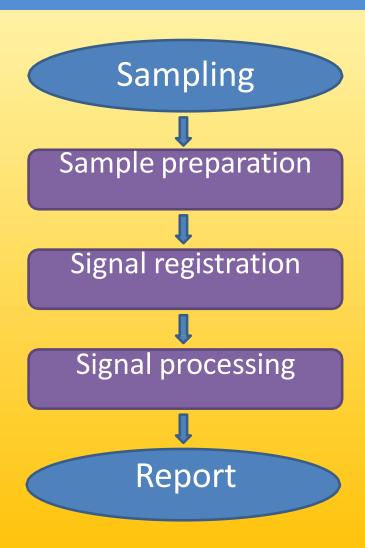
General principles of a qualitative chemical analysis. Identification of inorganic cations


Questions

- What is the goal of chemical analysis?
- What signals are used for quantitative analysis?
- What signals are used for qualitative analysis?
- Do you know any examples of qualitative analysis?

Signals for qualitative analysis

- Color and smell (solution, precipitate, flame)
- Boiling and melting points
- Formation of a precipitate with a reagent
- Refraction index
- Spectra (light absorption and emission, mass spectra)

General procedure of analysis

Qualitative analysis

Chemical

Precipitation (+ color)
Burning (+color)
Formation of a colored product
Voltammetry

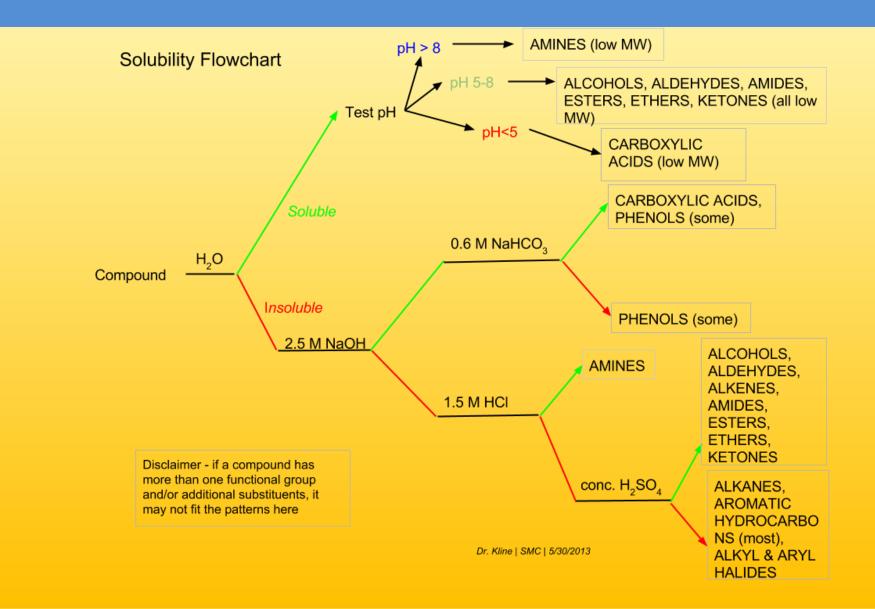
Physical

UV-Vis spectroscopy
IR spectroscopy
NMR spectroscopy
Chromatography
Electrophoresis
Mass spectrometry

Biochemical

Biosensors Bioassays

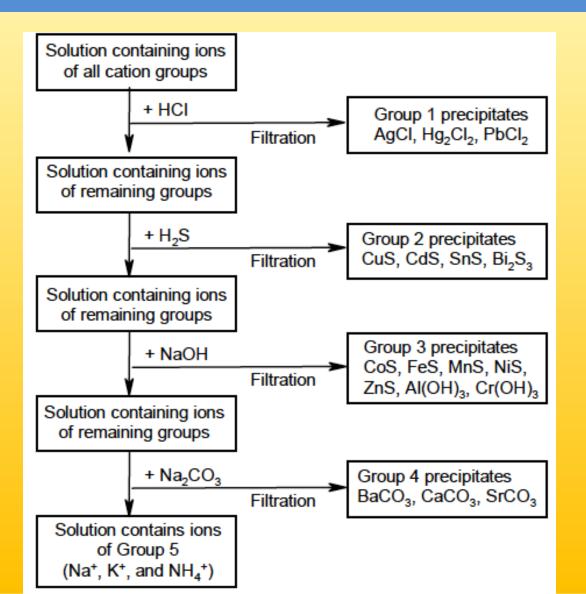
Examples of qualitative analysis


$$NH_4^+ + OH^- \longleftrightarrow NH_3^+ + H_2O$$

$$Ni^{2+} + 2C_4H_8N_2O_2 + 2OH^- \leftrightarrow C_8H_{14}N_4O_4 + 2H_2O$$

FLAME TEST COLOURS

Qualitative analysis by solubility


Identification of cations

- Acid-base
- Sulfide
- Ammonia-phosphate

Sulfide classification

Group No. Rus (Eng)	Cations	Reagent
I (or V)	K+, Na+, NH ₄ +, Mg ²⁺	No
II (or IV)	Ba ²⁺ , Ca ²⁺ , Sr ²⁺	$(NH_4)_2CO_3$
III	Al ³⁺ , Cr ³⁺ , Fe ³⁺ , Fe ²⁺ , Ni ²⁺ , Co ²⁺ , Mn ²⁺ , Zn ²⁺	(NH ₄) ₂ S
IV (or II)	I: Cu ²⁺ , Cd ²⁺ , Hg ²⁺ , Bi ³⁺ II: As ³⁺ , Sn ²⁺ , Sn ⁴⁺ , Sb ³⁺ , AsO ₄ ³⁻ , SbO ₄ ³⁻	H ₂ S
V (or I)	Ag+, Pb ²⁺ , Hg ₂ ²⁺	HCl

Flow chart

Acid-base classification

Group No.	Cations	Reagent
l	K+, Na+, NH ₄ +	No
II	Ag+, Pb ²⁺ , Hg ₂ ²⁺	HCl
III	Ba ²⁺ , Ca ²⁺ , Sr ²⁺	H ₂ SO ₄
IV	Al ³⁺ , Cr ³⁺ , Zn ²⁺ , As ³⁺ , As ⁵⁺	NaOH + H ₂ O ₂
V	Mg ²⁺ , Sb ³⁺ , Mg ²⁺ , Sb ⁵⁺ , Bi3+, Mn ²⁺ , Fe ³⁺ , Fe ²⁺	NaOH or NH₄OH (conc.)
VI	Cu ²⁺ , Cd ²⁺ , Hg ²⁺ , Ni ²⁺ , Co ²⁺	NH ₃ (conc.)

Video

https://www.youtube.com/watch?v=AWEr80mXj8Y